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Abstract In this paper, the numerical solution for the fractional order Fokker–Planck
equation has been presented using two dimensional Haar wavelet collocation method.
Two dimensional Haar wavelet method is applied to compute the numerical solution of
nonlinear time- and space-fractional Fokker–Planck equation. The approximate solu-
tions of the nonlinear time- and space-fractional Fokker–Planck equation are compared
with the exact solutions as well as solutions available in open literature. The present
scheme is very simple, effective and convenient for obtaining numerical solution of
the time and space-fractional Fokker–Planck equation.

Keywords Fractional Fokker–Planck equation · Haar wavelet method ·
Caputo derivative

1 Introduction

Fractional calculus is a field of applied mathematics which deals with derivatives and
integrals of arbitrary orders. The fractional calculus has gained considerable impor-
tance during the past decades mainly due to its application in diverse fields of sci-
ence and engineering such as viscoelasticity, diffusion of biological population, sig-
nal processing, electromagnetism, fluid mechanics, electrochemistry and many more.
Fractional differential equations are extensively used in modeling of physical phe-
nomena in various fields of science and engineering. For this we need a reliable and
efficient technique for the solution of fractional differential equations.

Recently, orthogonal wavelets bases are becoming more popular for numerical
solutions of partial differential equations due to their excellent properties such as ability
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to detect singularities, orthogonality, flexibility to represent a function at different level
of resolution and compact support. In recent years, there has been a growing interest in
developing wavelet based numerical algorithms for solution of fractional order partial
differential equations. Among them, the haar wavelet method is the simplest and is
easy to use. Haar wavelets have been successfully applied to the solutions of ordinary
and partial differential equations, integral equations and integro-differential equations.
Therefore, the main focus of the present paper is the application of Haar wavelet
technique to solve the problem of time and space fractional Fokker–Planck equations.
The obtained numerical approximate results of this method are then compared with
the exact solutions as well as solutions available in open literature.

Fokker–Planck equation (FPE) was introduced by Adriaan Fokker and Max Planck,
commonly used to describe the Brownian motion of particles [1]. A FPE describes
the change of probability of a random function in space and time; hence it is naturally
used to describe solute transport. The general FPE for the motion of a concentration
field u(x, t) of one space variable x at time t has the form [2–4]

∂u

∂t
=
[
− ∂

∂x
A (x) + ∂2

∂x2 B (x)

]
u (x, t) , (1.1)

with the initial condition

u (x, 0) = f (x) , x ∈ � (1.2)

where A (x) and B (x) > 0 are referred as the drift and diffusion coefficients. The
drift and diffusion coefficients may also depend on time.

There is a more general form of FPE called nonlinear Fokker–Planck equation
which is of the form [2–4]

∂u

∂t
=
[
− ∂

∂x
A (x, t, u) + ∂2

∂x2 B (x, t, u)

]
u (x, t) , (1.3)

The nonlinear Fokker–Planck equation (FPE) has important applications in various
fields such as plasma physics, surface physics, population dynamics, biophysics, engi-
neering, neuroscience, nonlinear hydrodynamics, polymer physics, laser physics, pat-
tern formation, psychology and marketing etc. [5].

In recent years there has been a great deal of interest in fractional diffusion equa-
tions. These equations arise in continuous time random walks, modelling of anomalous
diffusive and subdiffusive systems, unification of diffusion and wave propagation phe-
nomenon etc. [6].

Consider the generalized nonlinear time- and space-fractional Fokker–Planck equa-
tion [7]

∂αu

∂tα
=
[
− ∂β

∂xβ
A (x, t, u) + ∂2β

∂x2β
B (x, t, u)

]
u (x, t), t > 0, x > 0 (1.4)
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where α and β are parameters describing the order of the fractional time and space
derivatives, respectively. The function u(x, t) is assumed to be a casual function of
time and space, i.e. vanishing for t < 0 and x < 0. The fractional derivatives are
considered in the Caputo sense.

Various mathematical methods such as the Adomian decomposition method (ADM)
[8], variational iteration method (VIM) [8], operational Tau method (OTM) [9] and
homotopy perturbation method (HPM) [10] have been used in attempting to solve
fractional Fokker–Planck equations. Our aim in the present work is to implement two
dimensional Haar wavelet method in order to demonstrate the capability of this method
in handling nonlinear equations of arbitrary order, so that one can apply it to various
types of nonlinearity.

2 Fractional derivative and integration

There are several approaches to define the derivatives of fractional order such as
Grünwald–Letnikov, Riemann–Liouville and Caputo. Riemann–Liouville fractional
derivative is not suitable for real world physical problems as it requires the definition
of fractional order initial conditions, which have no physically meaningful explanation
yet. Caputo introduced an alternative definition, which has the advantage of defining
integer order initial conditions for fractional order differential equations.

Definition 1 The most frequently encountered definition of an integral of fractional
order is the Riemann–Liouville integral in which the fractional integral operator
Jα (α > 0) of a function f (t) , is defined as [11,12]

Jα f (t) = 1

� (α)

t∫
0

(t − τ)α−1 f (τ ) dτ, α > 0 and α ∈ �+ (2.1)

where �(.) is the well-known gamma function, and some properties of the operator
Jα are as follows

Jα Jβ f (t) = Jα+β f (t) , (α > 0, β > 0) (2.2)

Jαtγ = � (1 + γ )

� (1 + γ + α)
tα+γ , (γ > −1) (2.3)

Definition 2 The fractional derivative introduced by Caputo [11,12], in the late sixties,
is called Caputo Fractional derivative. The Caputo fractional derivative 0 Dα

t of a
function f (t) is defined as [11,12]

0 Dα
t f (t) = 1

� (n − α)

t∫
0

f n (τ )

(t − τ)α−n+1 dτ, (n − 1 < α ≤ n, n ∈ N ) (2.4)
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The following are two basic properties of the Caputo fractional derivative

0 Dα
t tβ = � (1 + β)

� (1 + β − α)
tβ−α, 0 < α < β + 1, β > −1 (2.5)

Jα Dα f (t) = f (t) −
n−1∑
k=0

f (k)
(
0+) tk

k! , n − 1 < α ≤ n and n ∈ N (2.6)

3 Haar wavelets

Haar functions have been used from 1910 when they were introduced by the Hungarian
mathematician Alfred Haar. Haar wavelets are the simplest wavelets among various
types of wavelets. They are step functions over the real line and can take only three
values 0, 1 and −1. The method has been used for being its simpler, fast and com-
putationally attractive feature. Usually the Haar wavelets are defined for the interval
t ∈ [0, 1) but in general case t ∈ [A, B], we divide the interval [A, B] into m equal
subintervals; each of width �t = (B − A)/m. In this case, the orthogonal set of Haar
functions are defined in the interval [A, B] by [13]

h0(t) =
{

1 t ∈ [A, B],
0 elsewhere,

(3.1)

and hi (t) =
⎧⎨
⎩

1, ζ1(i) ≤ t < ζ2(i)
−1, ζ2(i) ≤ t < ζ3(i)
0, otherwise

(3.2)

where

ζ1(i) = A +
(

k − 1

2 j

)
(B − A) = A +

(
k − 1

2 j

)
m�t,

ζ2(i) = A +
(

k − (1/2)

2 j

)
(B − A) = A +

(
k − (1/2)

2 j

)
m�t,

ζ3(i) = A +
(

k

2 j

)
(B − A) = A +

(
k

2 j

)
m�t,

i = 1, 2, . . . , m, m = 2J and J is a positive integer which is called the maximum
level of resolution. Here j and k represent the integer decomposition of the index i .
i.e. i = k + 2 j − 1, 0 ≤ j < i and 1 ≤ k < 2 j + 1.

4 Function approximation

Any function y(t) ∈ L2([0, 1)) can be expanded into Haar wavelets by [13–15]

y(t) = c0h0(t) + c1h1(t) + c2h2(t) + · · · , c j =
1∫

0

y(t)h j (t)dt . (4.1)
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If y(t) is approximated as piecewise constant in each subinterval, the sum in Eq. (4.1)
may be terminated after m terms and consequently we can write discrete version in
the matrix form as

y ≈
m−1∑
i=0

ci hi (tl) = CT
m Hm, (4.2)

where Y and CT
m are m-dimensional row vectors.

Here H is the Haar wavelet matrix of order m defined by H = [h0, h1, . . . , hm−1]T

i.e.

H =

⎡
⎢⎢⎣

h0
h1
· · ·
hm−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h0,0 h0,1 · · · h0,m−1
h1,0 h1,1 · · · h1,m−1
· · ·
hm−1,0 hm−1,1 · · · hm−1,m−1

⎤
⎥⎥⎦ , (4.3)

where h0, h1, . . . , hm−1 are the discrete form of the Haar wavelet bases.
The collocation points are given by

tl = A + (l − 0.5)�t, l = 1, 2, . . . , m (4.4)

5 Operational matrix of the general order integration

The integration of the Hm(t) = [h0(t), h1(t), . . . , hm−1(t)
]T can be approximated

by [15]

t∫
0

Hm(τ )dτ ∼= Q Hm(t), (5.1)

where Q is called the Haar wavelet operational matrix of integration which is a square
matrix of m-dimension. To derive the Haar wavelet operational matrix of the general
order of integration, we recall the fractional integral of order α(>0) which is defined
by Podlubny [11]

Jα f (t) = 1

�(α)

t∫
0

(t − τ)α−1 f (τ )dτ , α > 0, α ∈ �+ (5.2)

where �+ is the set of positive real numbers.
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The Haar wavelet operational matrix Qα for integration of the general order α is
given by

Qα Hm(t) = Jα Hm(t) = [Jαh0(t), Jαh1(t), . . . , Jαhm−1(t)
]T

= [Qh0(t), Qh1(t), . . . , Qhm−1(t)
]T (5.3)

where

Qh0(t) =
{ tα

�(1+α)
, t ∈ [A, B] ,

0, elsewhere ,
(5.4)

and

Qhi (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, A ≤ t < ζ1(i) ,

φ1, ζ1(i) ≤ t < ζ2(i),
φ2, ζ2(i) ≤ t < ζ3(i),
φ3, ζ3(i) ≤ t < B,

(5.5)

where

φ1 = (t − ζ1(i))α

�(α + 1)
,

φ2 = (t − ζ1(i))α

�(α + 1)
− 2

(t − ζ2(i))α

�(α + 1)
,

φ3 = (t − ζ1(i))α

�(α + 1)
− 2

(t − ζ2(i))α

�(α + 1)
+ (t − ζ3(i))α

�(α + 1)
,

for i = 1, 2, . . . , m, m = 2J and J is a positive integer, called the maximum level
of resolution. Here j and k represent the integer decomposition of the index i . i.e.
i = k + 2 j − 1, 0 ≤ j < i and 1 ≤ k < 2 j + 1.

6 Application of two dimensional Haar wavelet for solving time fractional
Fokker–Planck equation

Consider the nonlinear time-fractional Fokker–Planck equation [8,10]

∂αu

∂tα
=
[
− ∂

∂x

(
4u

x
− x

3

)
+ ∂2u

∂x2

]
u (x, t) , t > 0, x > 0 (6.1)

where 0 < α ≤ 1, subject to the initial condition

u (x, 0) = x2 (6.2)
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When α = 1,the exact solution of Eq. (6.1) is given by [8,10]

u (x, t) = x2et (6.3)

Let us divide both space and time interval [0, 1] into m equal subintervals; each of
width � = 1

m .

Haar wavelet solution of u (x, t) is sought by assuming that ∂2u(x,t)
∂x2 can be expanded

in terms of Haar wavelets as

∂2u (x, t)

∂x2 =
m∑

i=1

m∑
j=1

ci j hi (x)h j (t) (6.4)

Integrating Eq. (6.4) w.r.t. x from 0 to x we get

∂u (x, t)

∂x
− p (t) =

m∑
i=1

m∑
j=1

ci j Qhi (x)h j (t) (6.5)

Again, integrating Eq. (6.5) w.r.t. x from 0 to x we get

u (x, t) =
m∑

i=1

m∑
j=1

ci j Q2hi (x)h j (t) + q (t) + xp (t) (6.6)

Putting x = 0, in Eq. (6.6) we get

q (t) = u (0, t) = 0 (6.7)

Putting x = 1, in Eq. (6.6) we get

p (t) = u (1, t) − u (0, t) −
m∑

i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

= u (1, t) −
m∑

i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t) (6.8)

Putting Eq. (6.8) in Eqs. (6.5) and (6.6) we have

∂u (x, t)

∂x
=

m∑
i=1

m∑
j=1

ci j Qhi (x)h j (t) + u (1, t) −
m∑

i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

(6.9)

u (x, t) =
m∑

i=1

m∑
j=1

ci j Q2hi (x)h j (t) + x

⎡
⎣u (1, t) −

m∑
i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

⎤
⎦

(6.10)
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The nonlinear term presented in Eq. (6.1) can be approximated using Haar wavelet
function as

∂2u2

∂x2 − ∂

∂x

(
4u2

x

)
=

m∑
i=1

m∑
j=1

di j hi (x)h j (t)

This implies

2u

(
∂2u

∂x2 + 2u

x2

)
+ 2

(
∂u

∂x

)(
∂u

∂x
− 4u

x

)
=

m∑
i=1

m∑
j=1

di j hi (x)h j (t) (6.11)

Therefore substituting Eqs. (6.4), (6.9) and (6.10) in Eq. (6.11) we have

2

⎛
⎝ m∑

i=1

m∑
j=1

ci j Q2hi (x)h j (t) + x

⎡
⎣u (1, t) −

m∑
i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

⎤
⎦
⎞
⎠

⎡
⎣ m∑

i=1

m∑
j=1

ci j hi (x)h j (t) + 2

x2

⎛
⎝ m∑

i=1

m∑
j=1

ci j Q2hi (x)h j (t)

+x

⎡
⎣u (1, t) −

m∑
i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

⎤
⎦
⎞
⎠
⎤
⎦

+2

⎛
⎝ m∑

i=1

m∑
j=1

ci j Qhi (x)h j (t) + u (1, t) −
m∑

i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

⎞
⎠

⎡
⎣
⎛
⎝ m∑

i=1

m∑
j=1

ci j Qhi (x)h j (t) + u (1, t)

−
m∑

i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

⎞
⎠

− 4

x

⎛
⎝ m∑

i=1

m∑
j=1

ci j Q2hi (x)h j (t)+x

⎡
⎣u (1, t)−

m∑
i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

⎤
⎦
⎞
⎠
⎤
⎦

=
m∑

i=1

m∑
j=1

di j hi (x)h j (t) (6.12)

Substituting Eq. (6.11) in Eq. (6.1) we will have

∂αu

∂tα
=

m∑
i=1

m∑
j=1

di j hi (x)h j (t) + x

3

∂u

∂x
+ u

3
(6.13)
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Now applying Jα to both sides of Eq. (6.13) yields

u (x, t) − u (x, 0) = Jα

⎛
⎝ m∑

i=1

m∑
j=1

di j hi (x)h j (t) + x

3

∂u

∂x
+ u

3

⎞
⎠ (6.14)

Substituting Eqs. (6.2), (6.9) and (6.10) in Eq. (6.14) we get

m∑
i=1

m∑
j=1

ci j Q2hi (x)h j (t) + x

⎡
⎣u (1, t) −

m∑
i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

h j (t)

⎤
⎦

−x2 =
m∑

i=1

m∑
j=1

di j hi (x)Qα
t h j (t)

+ x

3

⎛
⎝ m∑

i=1

m∑
j=1

ci j Qhi (x)Qα
t h j (t) + Jαu (1, t)

−
m∑

i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

Qα
t h j (t)

⎞
⎠

+1

3

⎛
⎝ m∑

i=1

m∑
j=1

ci j Q2hi (x)Qα
t h j (t)

+x

⎡
⎣Jαu (1, t) −

m∑
i=1

m∑
j=1

ci j

[
Q2hi (x)

]
x=1

Qα
t h j (t)

⎤
⎦
⎞
⎠ (6.15)

Now substituting the collocation points xl = l−0.5
m and tk = k−0.5

m for l, k =
1, 2, . . . , m in Eqs. (6.12) and (6.15), we have 2m2 equations in 2m2 unknowns in ci j

and di j . By solving these system of equations using mathematical software, the Haar
wavelet coefficients ci j and di j can be obtained.

7 Application of two dimensional Haar wavelet for solving time- and
space-fractional Fokker–Planck equation

Consider the time- and space-fractional Fokker–Planck equation [8,10]

∂αu

∂tα
=
[
− ∂β

∂xβ

( x

6

)
+ ∂2β

∂x2β

(
x2

12

)]
u (x, t) , t > 0, x > 0 (7.1)

where 0 < α, β ≤ 1, subject to the initial condition

u (x, 0) = x2 (7.2)
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When α = 1 and β = 1, the exact solution of Eq. (7.1) is given by [8,10]

u (x, t) = x2e
t
2 (7.3)

Let us divide space interval [0, 1] into m equal subintervals; each of width � = 1
m .

Haar wavelet solution of u (x, t) is sought by assuming that ∂αu(x,t)
∂tα can be expanded

in terms of Haar wavelets as

∂αu (x, t)

∂tα
=

m∑
i=1

m∑
j=1

ai j hi (x)h j (t) (7.4)

Applying Jα both sides of Eq. (7.4), we get

u (x, t) = x2 +
m∑

i=1

m∑
j=1

ai j hi (x)Qαh j (t) (7.5)

Now

∂β

∂xβ
(xu (x, t)) = ∂β

∂xβ

(
x3
)

+
m∑

i=1

m∑
j=1

ai j
∂β

∂xβ
(xhi (x))Qαh j (t) (7.6)

and

∂2β

∂x2β

(
x2u (x, t)

)
= ∂2β

∂x2β

(
x4
)

+
m∑

i=1

m∑
j=1

ai j
∂2β

∂x2β

(
x2hi (x)

)
Qαh j (t) (7.7)

Substituting Eqs. (7.4), (7.6) and (7.7) in Eq. (7.1) we get

m∑
i=1

m∑
j=1

ai j hi (x)h j (t) = −1

6

⎛
⎝ ∂β

∂xβ

(
x3
)

+
m∑

i=1

m∑
j=1

ai j
∂β

∂xβ
(xhi (x))Qαh j (t)

⎞
⎠

+ 1

12

⎛
⎝ ∂2β

∂x2β

(
x4
)

+
m∑

i=1

m∑
j=1

ai j
∂2β

∂x2β

(
x2hi (x)

)
Qαh j (t)

⎞
⎠

(7.8)

Now substituting the collocation points xl = l−0.5
m for l = 1, 2, . . . , m in Eq. (7.8),

we have m2 equations in m2 unknowns ai j . By solving this system of equations using
mathematical software, the Haar wavelet coefficients ai j can be obtained.
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8 Convergence analysis of two-dimensional Haar wavelet method

In this section, we have introduced the error analysis for the two-dimensional Haar
wavelet method.

We assume that, f (x, y) ∈ C2([a, b] × [a, b]) and there exist M > 0; for which

∣∣∣∣∂
2 f (x, y)

∂x∂y

∣∣∣∣ ≤ M, ∀x, y ∈ [a, b] × [a, b].

Next, we may proceed as follows, suppose fnm(x, y) =∑n−1
i=0
∑m−1

j=0 ci j hi (x)h j (y),

where, n = 2α+1, α = 0, 1, 2, . . . and m = 2β+1, β = 0, 1, 2, . . ..
Then,

f (x, y) − fnm(x, y) =
∞∑

i=n

∞∑
j=m

ci j hi (x)h j (y)

+
∞∑

i=n

m−1∑
j=0

ci j hi (x)h j (y)+
n−1∑
i=0

∞∑
j=m

ci j hi (x)h j (y).

From Parseval’s formula, we have

‖ f (x, y) − fnm(x, y)‖2 =
b∫

a

b∫
a

( f (x, y) − fnm(x, y))2dxdy

=
∞∑

p=n

∞∑
s=m

∞∑
i=n

∞∑
j=m

c′
i j c

′
ps

b∫
a

hi (x)h p(x)dx

b∫
a

h j (y)hs(y)dy

+
∞∑

p=n

m−1∑
s=0

∞∑
i=n

m−1∑
j=0

c′
i j c

′
ps

b∫
a

hi (x)h p(x)dx

b∫
a

h j (y)hs(y)dy

+
n−1∑
p=0

∞∑
s=m

n−1∑
i=0

∞∑
j=m

c′
i j c

′
ps

b∫
a

hi (x)h p(x)dx

b∫
a

h j (y)hs(y)dy

=
∞∑

i=n

∞∑
j=m

c′
i j

2 +
∞∑

i=n

m−1∑
j=0

c′
i j

2 +
n−1∑
i=0

∞∑
j=m

c′
i j

2
,
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where, c′
i j

2 = ci j (b−a)2

2i+ j and

ci j =
b∫
a

⎛
⎝

b∫
a

f (x, y)hi (y)dy

⎞
⎠ h j (x)dx .

=
b∫
a

⎛
⎜⎜⎜⎝

a+
(

k+ 1
2

)(
b−a
2i

)
∫

a+k
(

b−a
2i

)
f (x, y)dy −

a+(k+1)
(

b−a
2i

)
∫

a+
(

k+ 1
2

)(
b−a
2i

)
f (x, y)dy

⎞
⎟⎟⎟⎠h j (x)dx

Using the mean value theorem of integral calculus we have,

a + k
(b − a)

2i
≤ y1 ≤ a +

(
k + 1

2

)
(b − a)

2i
,

a +
(

k + 1

2

)
(b − a)

2i
≤ y2 ≤ a + (k + 1)

(b − a)

2i
.

Hence, we obtain

ci j = (b − a)

b∫
a

(
f (x, y1)2

−i−1 − f (x, y2)2
−k−1
)

h j (x)dx .

Again by using the mean value theorem,

ci j = 2−i−1(b − a)

b∫
a

( f (x, y1) − f (x, y2))h j (x)dx .

Using Lagrange’s mean value theorem,

= 2−i−1(b − a)

b∫
a

(
(y1 − y2)

∂ f (x, y∗)
∂y

)
h j (x)dx where y1 ≤ y∗ ≤ y2

= 2−i−1(b − a)(y1 − y2)

⎛
⎜⎜⎜⎝

a+
(

k+ 1
2

)(
b−a
2 j

)
∫

a+k
(

b−a
2 j

)
∂ f (x, y∗)

∂y
dx

−
a+(k+1)

(
b−a
2 j

)
∫

a+
(

k+ 1
2

)(
b−a
2 j

)
∂ f (x, y∗)

∂y
dx

⎞
⎟⎟⎟⎠
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= 2−i−1(b − a)(y1 − y2)

(
2− j−1(b − a)

∂ f

∂y
(x1, y∗) − 2− j−1(b − a)

∂ f

∂y
(x2, y∗)

)

Now, we use the mean value theorem of integral calculus

a + k
(b − a)

2 j
≤ x1 ≤ a +

(
k + 1

2

)
(b − a)

2 j
,

a +
(

k + 1

2

)
(b − a)

2 j
≤ x2 ≤ a + (k + 1)

(b − a)

2 j

≤ 2−i− j−2(b − a)2(y1 − y2)(x1 − x2)
∂2 f (x∗, y∗)

∂x∂y
.

But for x1 ≤ x∗ ≤ x2, (y1 − y2) ≤ (b − a) and (x1 − x2) ≤ (b − a),
We obtain,

ci j ≤ (b − a)4

2i+ j+2 M if

∣∣∣∣∂
2 f (x∗, y∗)

∂x∂y

∣∣∣∣ ≤ M

Therefore, c′
i j

2 = c2
i j

(b−a)2

2i+ j ≤ (b−a)10

23i+3 j+4 M2

∞∑
n=k

∞∑
m=l

c′
nm

2 ≤
∞∑

n=2α+1

∞∑
m=2β+1

(b − a)10

23i+3 j+4 M2, α, β = 0, 1, 2, . . .

≤ (b − a)10 M2
∞∑

n=2α+1

∞∑
i=β+1

2i+1−1∑
m=2i

2−3i−3 j−4

≤ (b − a)10 M2
∞∑

n=2α+1

2−3 j−4
∞∑

i=β+1

(2i+1 − 1 − 2i + 1)2−3i

≤ (b − a)10 M2
∞∑

n=2α+1

2−3 j−4
∞∑

i=β+1

2−2i

≤ (b − a)10 M2
∞∑

n=2α+1

2−3 j−42−2(β+1) 1(
1 − 1

22

)

≤ 4(b − a)10

3l2 M22−4
∞∑

j=α+1

2 j+1−1∑
n=2 j

2−3 j

≤ 4(b − a)10

3l2 M22−4
∞∑

j=α+1

2−2 j

≤ 4(b − a)10

3l2 M22−4
(

4

3

)
2−2(α+1)
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≤
(

16

9

)
(b − a)10

l2k2 M22−4

=
(

16

144

)
(b − a)10

l2k2 M2

Next,

∞∑
n=k

l−1∑
m=0

c′
nm

2 ≤
∞∑

n=k

l−1∑
m=0

(b − a)10 M2

23i+3 j+4 ≤
∞∑

n=2α+1

(b − a)10 M2

23 j+4

β∑
i=0

2i+1−1∑
m=2i −1

2−3i

≤
∞∑

n=2α+1

(b − a)10 M2

23 j+4

β∑
i=0

(2−2i + 2−3i )

≤
(

52

21

)
2−4(b − a)10 M2

∞∑
j=α+1

2 j+1−1∑
n=2 j

2−3 j

≤
(

52

336

)
(b − a)10 M2

∞∑
j=α+1

2−2 j

≤
(

52

336

)
(b − a)10 M2

(
2−2(α+1)

(1 − 1
22 )

)

= 52(b − a)10 M2

252k2 .

Similarly, we have

k−1∑
n=0

∞∑
m=l

c′
nm2 ≤ 52(b − a)10 M2

252l2 .

Then

∞∑
n=k

∞∑
m=l

c′
nm

2 +
∞∑

n=k

l−1∑
m=0

c′
nm

2 +
k−1∑
n=0

∞∑
m=l

c′
nm

2 ≤
(

16

144

)
(b − a)10

l2k2 M2

+52(b − a)10 M2

252k2 + 52(b − a)10 M2

252l2 .

Hence, we obtain ‖ f (x, y) − fkl(x, y)‖ ≤ (b−a)10 M2

3

(
1

3l2k2 + 13
21k2 + 13

21l2

)
As l → ∞ and k → ∞ we can get ‖ f (x, y) − fkl(x, y)‖ → 0.
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Table 1 Comparison of present method solution with other numerical methods for classical order time
fractional Fokker–Planck equation (6.1) at various points of x and t for α = 1

t x u ADM [8] uV I M [8] uExact given in Eq. (6.3) u Haar

0.2 0.25 0.076333 0.076333 0.076338 0.0756165

0.5 0.305333 0.305333 0.305351 0.304392

0.75 0.687000 0.687000 0.687039 0.686321

1.0 1.221333 1.221333 1.221403 1.2214

0.4 0.25 0.093167 0.093167 0.093239 0.0958469

0.5 0.372667 0.372667 0.372956 0.376435

0.75 0.838500 0.838500 0.839151 0.841761

1.0 1.490667 1.490667 1.491825 1.49182

0.6 0.25 0.113500 0.113500 0.113882 0.110663

0.5 0.454000 0.454000 0.455530 0.451238

0.75 1.021500 1.021500 1.024942 1.02172

1.0 1.816000 1.816000 1.822119 1.82212

Table 2 Comparison of present method solution with other numerical methods for time fractional Fokker–
Planck equation (6.1) at various points of x and t taking α = 0.5 and 0.75

t x α = 0.5 α = 0.75

u ADM [8] uV I M [8] u Haar u ADM [8] uV I M [8] u Haar

0.2 0.25 0.110744 0.091795 0.0900792 0.087699 0.084593 0.0714745

0.5 0.442978 0.367179 0.421013 0.350796 0.338372 0.329117

0.75 0.996699 0.826154 0.990531 0.789291 0.761337 0.773339

1.0 1.771910 1.468717 1.79902 1.403180 1.353488 1.40468

0.4 0.25 0.143997 0.118678 0.13581 0.111718 0.106178 0.0973803

0.5 0.575909 0.474712 0.587481 0.446872 0.424712 0.431178

0.75 1.295980 1.068102 1.35217 1.005460 0.955602 0.998822

1.0 2.303960 1.898849 2.43004 1.787490 1.698849 1.80046

0.6 0.25 0.176478 0.146209 0.167654 0.138479 0.129926 0.116878

0.5 0.705914 0.584835 0.749162 0.553918 0.519702 0.534521

0.75 1.588310 1.315878 1.742 1.246320 1.169330 1.24986

1.0 2.823650 2.339338 3.14621 2.215670 2.078809 2.26291

9 Numerical results and discussion

The following Table 1 shows the comparison of exact solutions with the approximate
solutions of different numerical methods for time-fractional Fokker–Planck equa-
tion. Agreement between present numerical results with other approximate solutions
and exact solutions appears very satisfactory through illustrations in Tables 1 and 2.
Table 2 shows the comparison of approximate solutions of fractional order time-
fractional Fokker–Planck equation obtained by using two dimensional Haar wavelet
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Table 3 Comparison of approximate solutions obtained by using VIM, ADM and Haar wavelet method for
time- and space-fractional Fokker–Planck equation (7.1) at various points of x and t taking α = 1, β = 1

t x u ADM [8] uV I M [8] uExact given in Eq. (7.3) u Haar

0.2 0.25 0.069062 0.069062 0.069073 0.0689468

0.5 0.276259 0.276250 0.276293 0.274611

0.75 0.621563 0.621563 0.621659 0.619337

0.4 0.25 0.076250 0.076250 0.076338 0.0753937

0.5 0.305000 0.305000 0.305351 0.299222

0.75 0.686250 0.686250 0.687039 0.676175

0.6 0.25 0.084062 0.084063 0.084366 0.0818405

0.5 0.336250 0.336250 0.337465 0.323833

0.75 0.756562 0.756562 0.759296 0.733012

Table 4 Comparison of approximate solutions of fractional order time- and space-fractional Fokker–Planck
equation (7.1) obtained by using VIM, ADM, OTM and Haar wavelet method at various points of x and
t taking α = β = 0.5 and α = β = 0.75.

t x α = 0.5 and β = 0.5 α = 0.75 and β = 0.75

u ADM [8] uV I M [8] uOT M [9] u Haar u ADM [8] uV I M [8] uOT M [9] u Haar

0.2 0.25 0.060440 0.06111 0.061929 0.0601168 0.063002 0.062922 0.062920 0.0633685

0.5 0.244329 0.24618 0.248365 0.244247 0.258161 0.256856 0.256782 0.256326

0.75 0.559866 0.56056 0.562348 0.559936 0.592855 0.587790 0.588104 0.595415

0.4 0.25 0.059620 0.05996 0.061392 0.0591215 0.063371 0.063291 0.063305 0.063968

0.5 0.242066 0.24303 0.246833 0.241821 0.264157 0.262868 0.262916 0.260722

0.75 0.558992 0.55902 0.562276 0.558771 0.615589 0.610213 0.611786 0.618446

0.6 0.25 0.059004 0.05898 0.060883 0.0583544 0.063713 0.063642 0.063669 0.0644986

0.5 0.240363 0.24033 0.245395 0.239941 0.269702 0.268564 0.268707 0.264632

0.75 0.558407 0.55777 0.562273 0.557834 0.636878 0.631709 0.634637 0.639038

method with the solutions of Adomian decomposition method (ADM) and Variational
iteration method (VIM) presented in Ref. [8].

Similarly Tables 3 and 4 show the comparison of approximate solutions obtained by
different numerical methods for time- and space-fractional Fokker–Planck equation.
It is found that the solutions obtain by using present method are in good agreement
with the results presented in Ref. [8] and even better than the results obtained by
Operational Tau method (OTM) presented in Ref. [9]. However, the errors may be
reduced significantly if we increase level of resolution which prompts more number
of collocation points.

10 Conclusion

In this paper, the time and space fractional Fokker–Planck equations have been solved
by using two dimensional Haar wavelet method. The obtained results are then com-
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pared with exact solutions as well as results obtained by Adomian decomposition
method (ADM), Variational iteration method (VIM) and Operational Tau method
(OTM) which are available in open literature. These results have been cited in the
tables in order to justify the accuracy and efficiency of the proposed scheme. The Haar
wavelet technique provides quite satisfactory results in comparison to results obtained
by ADM, VIM and OTM [8,9] for the fractional order Fokker–Planck equations as
demonstrated in Tables 1, 2, 3 and 4. The main advantage of this Haar wavelet method
is that it transfers the whole scheme into a system of algebraic equations for which the
computation is easy and simple. In addition, other pretty features of this scheme are
its simplicity, applicability and less computational effort. Moreover, the errors may be
reduced significantly if we increase level of resolution which prompts more number
of collocation points.
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